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I. 

1.     INTRODUCTION 

In his interesting paper  [2],  Claude Berge directs our attention to 

two questions,  relevant to the use of linear programming in combinational 

problems.    Let    A   be a  (0,1)  - matrix,    w    and    c    nonneaatlve integral 

vectors, and define the polyhedra 

(1.1) P(A,w,c)  = {y  | y A > w,  0 < y < c), 

(1.2) Q(A,w,c)  =  {y  |  yA < w,  0 < y <  c}. 

Let 1 ■ (!,...,!) denote the vector all of whose components are 1. The two 

questions are: 

(1.3) If P(A,w,c) is not empty, is the minimum value of l*y, taken over all 

y e P(A,w,c), achieved at an integral vector y? 

(1.4) Is the maximum value of I'y, taken over all y t  Q(A,w,c), achieved 

at an integral vector y? 

Berge defines a  (0,1) - matrix A to be balanced if A contains no 

square submatrix of odd order whose row and column sums are all two. He 

shows that the answer to (1.3) is affirmative for all  (0,1) - vectors w 

and c if and only if A is balanced.  He shows that the answer to (1.4) 

is affirmative for all w whose components are 1 or * and for all (0,1)- 

vectors c if and only if A is balanced. Finally, he remarks that for all c 

whose components are 0 or 00 and all w whose components sure nonnegative 

integers, the Loväsz - Fulkerson perfect graph theorem [4], [6], [7] implies 

that the answer to (1.3) is affirmative if and only if A is balanced. 

In this paper we prove that if A is balanced, then the answers to 

(1.3) and (1.4) are affirmativ« for all nonnegative integral w and c. 
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We do not use the perfect graph theorem as a lemma, nor the results of 

Berge in [2] or In earlier work on balanced matrices [1]. 

The above results and those of Berge are used to relate the theory of 

balanced matrices to those of blocking pairs of matrices and anti-blocking 

pairs of matrices [3], [4], [5]. We summarize below some pertinent aspects 

of these two geometric duality theories. 

We first discuss briefly the blocking theory.  Let A be a nonnegative 

m by n matrix, and consider the convex polyhedron 

(1.5) {x | A x > 1, x > 0}. 

A row vector a  of matrix A is inessential (does not represent a facet 

of (1.5)) if and only if a  is greater than or equal to a convex combina- 

tion of other rows of A. The (nonnegative) matrix A is proper if none 

of its rows is inessential. Let A be proper with rows a ,...,a .  Let 

1     r       1     r 
B be the r by n matrix having rows  b ,...,b , where b ,...,b are 

the extreme points of (1.5). Then  B is proper and the extreme points of 

the polyhedron 

(1.6) {x | B x > 1, x > 0} 

are a (...»a .  The matrix B is called the blocking matrix of A and 

vice-versa.  Together A and B constitute a blocking pair of matrices. 
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and the polyhedra (1.5) and (1.6) they generate are called a blocking pair 

of polyhedra.  (Thus for any blocking pair of polyhedra, the non-trivial 

facets of one and the extreme points of the other are represented by exactly 

the same vectors; trivial facets are those corresponding to the nonnegativity 

constraints.) 

Let A be a nonnegative m by n matrix and consider the packing 

program 

(1.7)  maximize I'y subject to yA < w, y > 0, 

x where w is nonnegative.  Let B be an r by r  nonnegative matri 

1     r 
having rows b ,...,b .  The max - min equality i^ said to hold for the 

ordered pair A,B if, for every n-vector w > 0, the packing program (1.7) 

has a solution vector y such that 

(1.8^   I'y ■ min b »w . 

l<j<r 

One theorem about blocking pairs asserts that the max - min equality holds 

for the ordered pair of proper matrices A,B if and only if    A and B    are a 

blocking pair.    Hence,   if the max - min equality holds for A^,  it also 

holds  for B,A.     (Note that the addition of inessential rows  to either    A 

or    B    does not affect the max - min equality.) 

Now let    A    be a proper    (0,1)   - matrix, with blocking matrix    B.     The 

strong max - min equality  is said to hold for    A,B     if,  for any nonnegative 

integral  vector    w,   the packing program   (1.7)   has  an  integral  solution 

vector    y,  which of course satisfies   (1.8).     A necessary,  but not sufficient, 

condition for the strong max - min equality to hold for A,B is that  each 



row of B be a  (0,1) - vector. To say that an m by n (0,1) - matrix 

A is proper is simply to say that A is the incidence matrix of m 

pairwise non-comparable subsets of an n-set, i.e. A is the incidence matrix 

of a clutter. If the strong max - min equality holds for A and its 

blocking matrix B, then B is the incidence matrix of the blocking clutter, 

i.e. B has as its rows all (0,1) - vectors that make inner product at least 

1 with all rows of A, and that are minimal with respect to this property. 

If A and B are a blocking pair of (0,1) - matrices, the strong max - min 

equality may hold for A,B, but need not hold for B,A.  This is in decided 

contraft with the similar situation for anti-blocking pairs of matrices, 

which we next briefly discuss. 

Let A be an m by n nonnegative matrix with rows a , ,a , 

having no zero columns, and consider the convex polyhedron 

(1.9) <x | A X < 1, x > 0}. 

(While a row vector a  of A is inessential in (1.9) if and only if a 

is less than or equal to a convex combination of other rows of A, we shall 

not limit A to "proper" matrices in  this discussion, as we did for blocking 

pairs, because there will not be a one-one correspondence between non-trivial 

facets of one member of a pair of anti-blocking polyhedra and the extreme 
1     r 

points of the other.)  Let D be the r by n matrix having rows A ,,,, ,ä 

1 r 
whsre d ,...,d are the extreme points of (1.9).  Then D is nonnegative, 

has no zero columns, and the extreme points of 

(1.10) {x | D x < 1, x > 0) 
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are    a ,...,a      and all projections of a  ,...,a  .    D    is called an anti- 

slocking matrix of A, and vice-versa.    Together   A and D    constitute an 

anti-blocV.inq pair of matrices, and the polyhedra   (1.9)   and  (1.10)  are an 

anti-blocking pair of polyhedra. 

Now consider the covering program 

(1.11) minimize  I'y subject to yA > w,  y  >  0, 

where    w    is nonnegative.    Let    D   be an    r by n    nonnegative matrix having 

1 r 
no zero columns with rows    d ,...,d  .    The min - max equality is said to 

hold for the ordered pair A,D if, for every n-vector w >  0,  the covering 

program  (1.11)  has a solution vector    y    satisfying 

(1.12) l*y = max    d   -w. 
l<j<r 

Then the min - max equality holds for A,D if and only if A and D are an 

anti-blocking pair.  Hence, if the min - max equality holds for A,D, it also 

holds for D,A. 

Now let A be a (0,1) - matrix, with arti-blocker D.  The strong 

min - max equality is said to hold for A,D if, for every nonnegative integral 

vector w, the covering program (1.11) has an integral solution vector y; y 

of course satisfies (1.12).  A necessary and sufficient condition for the 

strong min - max equality to hold for A,D is that all the essential rows of D 

be (0,1) - vectors. Hence, if the strong min - max equality holds for 

A,D, it also holds in the reverse direction D,A (where we may limit D to 

its essential rows.) In this case it can be shown that the essential 

(maximal) rows of A are the incidence vectors of the cliques of a graph 

G on n vertices, and the essential rows of D ar« the incidence vectors 

of the anti-cliques (maximal independent sets of vertices) of G. Graph 

G is thus pluperfect, or equivalently, perfect. The fact that the strong 
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min - max equality for A,D Implies the strong min - max equality for 

D,A is the essential content of the perfect graph theorem. 

We shall show in Section 5 that the results described above and those 

of Berge imply: (a) If A is balanced and B is the blocking matrix of A, 

then the strong max - min equality holds for both A,B and B,A, and (b) 

If A is balanced and if D is an anti - blocking matrix of A, then the 

strong min - max equality holds for A,D (and hence for D,A). 

2. VERTICES OF SOME POLYHEDRA. 

We first state the leitnas of this section, and then give their proofs. 

Lemma 2.1.  If A is^ balanced, and if{x | Ax= 1, x> 0}i£ not empty, 

then every vertex of this polyhedron has all coordinates 0 or 1. 

Lemma 2.2.  L£ A is^ balanced, and if^fx | Ax> l,x>0}i£ not empty, 

then every vertex of this polyhedron has all coordinates 0 or 1. 

Lemma 2.3.  If A is balanced, and if {x,z | Ax-z =1, x > 0, z > 0} is 

not empty, then every vertex of this polyhedron is integral. 

Lemma 2.4. If A it balanced, then every vertex of^ {x,z | Ax-z < 1, 

x > 0, z > 0} i£ integral. Hence if. A is_ balanced, every vertex of 

{x | Ax < 1, x > 0} has coordinates 0 gz_    1. 

Note that Lemma 2.1 is a special case of Lenma 2.3, but it is 

convenient to separate the proofs. 

Proof of Lemma 2.1.  If A is balanced, then every submatrix of A 

is balanced. We shall prove Lemma 2.1 by induction on the number of rows 

of A.  It is clearly equivalent to prove that if x > 0 satisfies Ax = 1, 

then there exists a set of non-overlapping columns a. ,...,a. of A 
Ji     it. 
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(i.e., a. -a.  = 0 for r / s) whose sum is the vector 1. For any set S 
r  s 

of non-overlapping columns, define C(S), the "cover of S", to be the number 

of i such that l    a. . = 1. Let S* be a set of non-overlapping columns 

such that C(S*) > C(S) for any set S of non-overlapping columns. If 

C(S*) = m - number of rows of A, we are done, so assume C(S*) = k < m, and, 

say, I      a  = 1 for i = l,...,k. Let Ä be the submatrix of A formed 
J£S*  13 

by rows l,...,k. We have Äx = 1, x > 0, so, by the induction hypothesis, 

any column of A is contained in a set T of non-overlapping columns of 

A such that C(T) = k. In particular, let j* be a column index such that 

a. .* ■ 1 for some it{k+1,.. . ,m} , and let the aforementioned T contain j*. 

Now some column indices in T  (possibly none) may coincide with some column 

indices in S*.  Let V = T - S*, U = S* - T, both non-empty. Define a 

graph G(A) whose points are the indices in V u U, with j  and i    adjacent 

if and only if a.-a > 0.  Clearly G(Ä) is bipartite with parts U and V. 
J  '■ 

Let W be the vertices of the connected component W(A) of G(A) containing 

j*  (W maybe VuU).  It follows that 

(2.1)  for i=l,...,k,   I      a..=   I   a., • 0 or 1. 
jcL'nW   ^    jtV'iW    •' 

Suppose that, for each i = k + l,...,m. 

(2.2)  E   a,. < 1. 
jevnw   J " 

Since j* e  W, it follows from (2.1) and (2.2) that the columns of A with 

indices in 

(S* - (UnW) ) ii (vnw) 
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are a non-overlapping set of columns with cover > k ■•■ 1, contradicting the 

definition of S*. Hence, (2.2) is untenable. Now consider the graph 

W(A) with point set W, where j a.-d I   are adjacent if and only if 

a.-a > 0. Recall that W(Ä) is connected and bipartite. The graphs 

W(A) and W(A) have the same point set W, but W(A) has more edges. In 

particular, there exists at least one pair of points in Wnv which are 

adjacent in W(A). Let j and I  be points in Wnv such that the shortest 

path P in W(Ä)  joining j and £ contains no points j' and i'  in 

Wnv adjacent in W(A) other than j and I,    Clearly such a path exists 

and is of even length.  Let this path be 

j ■ J1» i1» J2» 
i2"-"lp'  ip' ip+i  " * 

where the first, third,  fifth,...  indices are in    V,  the second,  fourth,... 

indices are in    U.     Let r*£{k +  l,...,in} satisfy    a 4.     =  a i. =1    and 
r ^i     r*Vi 

choose x.,,.,tX , a.,...,a    such that 

ar i    = 
a
r i    " i»    t = l,...,p, 

tJt t t 

a = a * 1,     t =  1,...,p. 
Vt     Vt+i 

That such indices exist follows from the construction of the path P.  It is 

now clear that the submatrix of A formed by the column." i ,..., i , j.,..., 

j .,  and rows r*, r, ,...,r , s,,..., s violates the hypothesis that A is 
p+J. 1     p  1      p 

balanced. Thus C(S*) ■ m, proving Lemna 2.1. 

Proof of Lewna 2.2. If x is a vertex of {x | A x > 1, x > 0}, it is 

a vertex of the polyhedron obtained by deleting the inequalities of Ax > 1 

that are strict. By Lemma 2.1, every vertex of this polyhedron has all 

coordinates 0 or 1. 
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Proof of Lemma 2.3. If  (x,z) is a vertex of {x,z | A x-z ■ .l,x > 0, 

z > 0), then x is a vertex of {x | A x > 1, x > 0}. Lemma 2.3 thus follows 

from Lemma 2.2. 

Proof of Lemna 2.4. If  (x,z)  is a ver:ex of {x,2 | A x-z < 1, 

x > 0, z > 0), it is a vertex of the polyhedron obtained by deleting the 

inequalities of Ax-z < 1 that are strict. Thus Lemma 2.4 follows from 

Lemma 2.3. 

3. Solution of Problem (1.3). We first prove a lemma. 

Lemma 3.1. Let A be a  (0,1) - matrix satisfying the condition; For all 

nonnegative integral vectors w and c such that P(A,w,c) is not enpty, 

the minimum value of I'y, yeP(A,w,c),i£an integer. Then for all 

nonnegative integral vectors w and c such that P(A,w,c)  is not enpty, 

there exists an integral vector y that minimizes I'y over ycP(A,w,c) . 

Proof. The leitfa is true if 1^=0, and so we argue by induction 

on 1•c. 

Ajsume y = (y,, y-,...,y ) is a solution to the linear program 

(3.1)  minimize I'y subject to y£P(A,w,c), 

with at least one component not integral/ say y. = i? + 6, where r > 0 is an 

integer and 0 < o < l. Let I'y ■ k, where k is an integer. For any 

number z, define z = max(0,,s),  and for any vector z = (z ,2 ,...), 

,.   +  , +  + 
define z = (z , z ,...).  Let a ■ (r, y_,...,y ), and note that 

i.       t ^     m 
^ \ • ■ 

0 < a < c = (c -1, c ,...,c ).  Let a be the first row of A.  Since —   -       1     <:      m 
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1 1 + 1 +    ^ aA > w-a    and aA >  0, we have aA >   (w - a )   .     Thus    a e P(A, (w-a  1   ,  c), 

and I'd = k - 6  <k.    Now    lac <   l*c.    Hence» by the induction assumption 

there exists an integral vector    3 ■  (ß,,...,ß )  such that ßA >   (w - a ) x n — 

1 ^ >w-a,0<ß<c, and l»ß=«Ä,<k-e<k/ where    i    is an integer. 

Therefore, the integral vector ß =   (ß,+l,ß,,...,ß  )   £ P(A,w,c),   1*3 = 
1        i m 

t+1  < k.    But no solution to   (3.1)   can have value less than    k,  and hence 

1*3 = k.    Thus  ß is an integral vector solving   (3,1). 

Theorem 3.2.    Let    A    be balanced,  and let   w    and    c    be nonnegative integral 

vectors such that    F(A,w,c)     is_ not empty.    Then the linear program  (3.1)  has 

an integral solution. 

Proof.      Since    P(A,w,c)   is not empty and bounded,   (3.1)  has a solution. 

Hence, by the duality theorem of linear programning,  the dual program 

(3.2)     maximize wx - cz subject  to Ax-z < 1,  x > 0,  z >  0, 

has a solution.    One such must occur at a vector with integral coordinates, 

by Lemma 2.4,  so the common value of  (3.2)  and of  (3.1)  is  an integer.    But 

this means that the hypothesis of Lemma J.l holds.    Hence,   the conclusion 

of Lemma 3.1 holds, proving the theorem. 

Note that the theorem holds  if all coordinates of the vector    c    are 

«>,   an observation we wi^l need below. 

4.     Solution of Problem (1.4).    We denote this  section to the proof of 

Theorem 4.1 below. 
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Theorem 4.1. Let A be a balanced matrix, and let w and c b£ nonnegative 

integral vectors. Then the linear program 

(4.1) maxmize l-y subject to yeQ(A,w,c) 

has an integral solution vector y. 

Proof.  We first remark that if A is balanced, the matrix (A,I) is 

balanced. Thus it suffices to prove that if A is balanced and w > 0 is 

integral, then the linear program 

(4.2) ma::iiT.ize I'y subject to yA < w, y > 0, 

hc-.s an integral solution vector y.  We shall prove this by a double induction 

on the pair of integers  (I'w.m),  where A has m rows.  Note that the 

theorem clearly is valid for any m > 1 if I'w = 0; it is also valid for any 

nonnegative integer value of I'w if m = 1 (i.e., if (4.2) is a problem in 

ono variable.) 

Let y = (y , y_,...,y )  be a fractional solution of (4.2).  If at 

least one y.  is zero, we are in the situation described by the pair of 

integers  (I'w, m-1), since any submatrix of A is balanced, and the 

induction hypothesis applies.  Thus we suppose all y. > 0.  By Lerma 2.2 

and the duality theorem of linear programming, we know that  l^y = k, where 

k is an integer. Now suppose there is at least one j  such that ya. < w., 

where a.  is the jth column of A.  Thus w. > 0.  If ya. < w. - 1, 
D 3 3-D 

we consider the pair of integers  (l*w - 1, m).  By the inductive hypothesis, 

there is an integral vector z such that zA< 0, z> 0, l,z= l»y=k, and 

we are done. Thus we may assume that ya. = w. - 1 + 6, where 0 ^ 6 < 1. 
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Hence a. y 0. Then clearly we can find a vector z such that z > 0, 

zA < (w. , w_,.,., w. - l,...,w ), z < y, and l»z= k - 9. By the inductive —  i  ^     ]        n    - 

hypothesis for the pair of integers (l*w - 1, m) , there is an integral 

vector a satisfying a > 0, aA < (w,,...,w,-l,... ,w ) < w, I'a > k - 6, 
-  1     j      n - 

hence l*a = k, and we are done. 

Thus ya, = w. for all j  and y, > 0 for all i. By the 

principle of complementary slackness, every optimal solution of the dual 

problem 

(4.3)  minimize wx subject to äX > 1, x > 0 

satisfies Ax = 1, x > o, wx = k.  Select one such x. Then y and x are 

optimal solutions, respectively, of the dual programs 

(4.4) minimize I'y subject to yA > w, y > 0, 

(4.5) maximize wx subject to Ax < 1, x > 0, 

with common value I'y = wx = k.  By the remark at the end of the last 

section, there exists an integral vector a such that a > 0, aA > w, 

l*a = k.  If aA = w, we are done.  So assume a «a. > w. for at least one j. 
j   j 

Since y. > 0 for all i, there is a number t, 0 < t < 1, such that y. > 

(l-t)a. for all i. Let vector z solve y = (l-t)a t  tz, i.e., 

z = — [y-(l-t)a]. Thus z > 0 and l'z = k. Now, since yA = w and 

aA > w, it follows that zA < w. Moreover, since there is a j  such that 

a-a. > w. , we have z'a. < w..  Thus z is a solution to (4.1) with z'a. 
J   3 1   ] 1 

< w. for some j.  However, as we have already seen, in this case the theorem 

is true by induction, and this completes the proof of Theorem 4.1. 
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5. Blocking pairs and anti-blocking pairs.  Our purpose in this section 

is to prove the following theorems, which were mentioned in Section 1. 

Theorem 5.1. Let A be balanced and let B be the blocking matrix of    A. 

Then the strong max - min equality holds for both A,B and B,A. 

Theorem 5.2. Let A be balanced with no zero columns and let D be an 

anti-blocking matrix of A. Then the strong min - max equality holds for 

both A,D and D,A. 

Note that we have not assumed the (0.1) - matrix A in the statement 

of Theorem 5.1 to be proper; it would be no restriction to do so, however; 

we could just consider the minimal (essential, in the blocking sense) rows 

of A. 

Proof of Theorem 5.1.  That the strong max - min equality holds for 

the ordered pair A,B follows from Theorem 4.1 by taking the components of 

the vector c in Theorem 4.1 all equal to M. 

To show that the strong max - min equality holds in the reverse 

direction B,A, we first note that Theorem 2 of [2] can be rephrased in 

blocking terminology as follows:  Let A be balanced and let B have as 

its rows all (0,1) - vectors that make inner product at least 1 with every 

row of A and that are minimal with respect to this property (i.e.,  B is 

the incidence matrix of the blocking clutter of the clutter of minimal rows 

of A); then the linear program 

(5.1)  maximize I'y subject to yB < 1, y > 0, 
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has a (0,1) solution vector y satisfying I'y = min l'a , taken over all 

rows  a  of A.  To get tht strong max-min equality for B,A from this, we 

need to pass from the vector 1 on the right-hand side of yB < 1 to a 

general nonnegative integral vector w.  This transformation can be effected 

inductively by first observing that if A is br.lanced, and if we duplicate 

a column of A, the resulting matrix A' is balanced.  (Prop. 5 of [2)) • 

Pictorially: 

A (balanced) A' (balanced) 

,11 
.0 

i 1 1 • i 
r 

;     , . 
1 
0 

1 
0 

X 

• • 
0 0 

B (blocker of A) B' (blocker of A') 

1 
1 0 
* * Y 

! 1 
1 

0 

; o 1 
i • '• Y 

0   1 

0   0 

0   0 

Thus, if the first component of w is 2, instead of 1, we can considei.- the 

linear program 

(5.2)   maximize  I'y subject to yB' < 1, y > 0, 
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instead of 

(5.3)  maximize 1'y subject to yB < (2,1,...,1), y > 0. 

It follows that a general nonnegWtive integral vector w can be dealt with 

by deleting certain columns of /\ (those corresponding to zero components of 

w), replicating others, yielding 

appropriate transformations on th 

w means that we delece the corres 

rows of B that had a 1 in thai 

i new balanced matrix, and making the 

blocker B of A (a zero component of 

ponding column of B and also delete all 

column).  In this way, one can deduce from 

Theorem 2 of [2] that if A is balanced, the strong max - min equality holds 

for B,A. * 

In connection with Theorem 5.1 and its proof, we point out that the 

blocking matrix B of a balanced matrix A may not be balanced.  For 

example, let 

110 0 0 0 0 
0 0 1 1 0 '0 0 
0 0 10 0 0 1 
0 0 0 10 10 
0 0  0  0  111 

Matrix    A    is balanced, with blocking matrix 

"o    1    1     1    1    0    o' 

B = 
0 111     0 
0 ! 1     0     1 
1 ,0     11 

Proof of Theorem 5.2, 

0 10 
0 0 1 
10 0 

10 10 0 10 
10     0     10    0     1 

If the     (0,1)   -  matrix    A    has no  zero columns. 

then    P{A,w,c)   is not empty,  where    c     is  the vector all of whose  cortponents 

are -».     The strong min - max equality  for A,D,  where    D    is  an anti-blocking 
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matrix ot A, now follows from Theorem 3.2 and the discussion in Section 1 

concerning anti-blocking pairs. Moreover, as noted in Section 1, the strong 

min - max equality for A,D implies the strong min - max equality for D,A. 

Theorem 5.2 can be paraphrased as follows.  The maximal (essential, 

in the anti-blocking sense) rows of a balanced matrix A are the incidence 

vectors of the cliques of a perfect graph G.  Consequently the essential 

rows of D are the incidence vectors of the anti-cliques of G. 
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